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SUMMARY

Similarity analyses are made to provide scaling laws which indi-

cate the effects of amplitude, frequency and material properties on the

resonant damping experienced by structural elements when the damping

is due to internal material properties. Two nonlinear damping "laws"

are considered. The first concerns frequency-independent hysteresis

damping in which the material damping coefficient g satisfies a rela-

tion of the form

(-_0) n
g : , (i)

where s is the stress amplitude and S o and n are material constants.

The second damping law concerns nonlinear damping for which

g -- 1 + _2_.2 ' (ii)

with the relaxation time 7 being an additional material constant. Cor-

relations provided by the scaling laws were performed on data from a

large number of tests with steel, brass and aluminum cantilever

beams. The steel and brass data were correlated reasonably well on

the basis of (i) while the aluminum data were better correlated on the

basis of (ii).
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FOREWORD

This technical note represents the first of a series that will be published

covering work sponsored by the Marshall-Goddard* Vibration Committee.

This Committee utilizes results from previous research and extends these

findings with the following specific objectives:

1. To advance technical knowledge in such a way that vibration test

specifications gradually will improve and will take into account non-

linear behavior of the materials generally used in spacecraft con-

struction.

2. To postulate more realistic assumptions regarding the nature of the

random and quasi-periodic oscillations usually encountered in space-

craft structures (those which ensue from more complex or random

external excitation). Obviously, specifications then may be written

with less margin of error between true structural inputs and their

laboratory-simulated counterparts.

With regard to the results published herein, formulas evolved from the theory

have not, as yet, been verified through carefully planned new experimentation.

However such experimentation now is being prepared at Goddard Space Flight

Center. The results from this experimental study would be expected to de-

fine certain limitations within which the Author's findings may be employed.

*Marshall Space Flight Center, Huntsville, Alabama; and Goddard Space Flight Center, Greenbelt, Maryland.
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ON SCALING LAWS FOR MATERIAL DAMPING*

by

Stephen H. Crandall

Massachusetts Institute of Technology

INTRODUCTION

Possibly the most vexing problem in mechanical vibrations is that of damping. Gen-

erally speaking, it is only in lightly damped systems that vibration becomes a critical

factor. There are, however, a multitude of mechanisms which produce small amounts of

damping and our knowledge about many of them is far from adequate. The present investi-

gation is limited to vibrations of single continuous metal elements such as beams. When

such an element vibrates, damping may arise externally owing to windage or to acoustical

transmission of energy because the vibration takes place in air; and it may arise as a re-

sult of slippage at, or of energy transmission across, an interface where the element is

connected to the exciter or to a foundation. In addition, damping will arise within the ele-

ment itself because of the fluctuating stress-strain history. The relative importance of

internal vs. external damping varies widely with the application. We shall be concerned

here with the case where the internal damping is overriding. This will be the case if, for

example, the vibration takes place in a vacuum and the connections of the element are

such as to minimize the possibility of slip damping and energy loss across the interface.

This investigation was undertaken to rationalize certain anomalous results obtained

by Granick 1 from tests on clamped cantilever reeds. A similarity analysis of nonlinear

hysteresis damping (see Section 2) was made which appeared to show promise as a means

of correlating the results. At this time a more extensive set of similar test results was

made available by Vet _. The proposed correlation appeared to be satisfactory for steel

and brass but quite unsatisfactory for aluminum (see Section 5). As a result, a further

similarity analysis was made of a nonlinear relaxation process (see Section 3) which led

to a reasonably good correlation for the aluminum data.

*Manuscript submitted December 1961

1Granick, N., "Choosing a Suitable Sweep Rate for Sinusoidal Vibration Testing," NASA Technical Note D-709, October

1961

2Vet, M., Collins Radio Company, Cedar Rapids, iowa (Ixivate communication). See also "Study Program to Modify the

Vibration Requirements o[ MIL-T-5422E and MIL-E-5272C (Dwell-Sweep Correlation Study) ", Collins Engineering Repcct

1582, May, 1962.
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INTERNAL DAMPING BY LINEAR RELAXATIONPROCESSES

Linear relaxation processes in metals have been surveyed by Zener 3, who described

a number of different mechanisms. Of those which have received quantitative attention the

only one which is significant at room temperature, in the frequency range of importance

in mechanical vibration (1 to 10,000 cps), is the mechanism of relaxation by transverse

thermal currents. The amount of damping provided is, however, somewhat smaller than

is generally found in vibrations involving engineering stress levels. It is nevertheless of

interest to review the theory of this mechanism.

Let us consider a metal reed vibrating transversely. When the fibers at one side are

stretched, they tend to cool; and the fibers at the other side, which are compressed, tend

to heat. The difference in temperature causes a thermal current to flow across the beam,

which involves some irrecoverable loss in energy. The amount of the loss depends criti-

cally on the time factors involved. If the beam vibrates at a very high frequency, the

alternate heating and cooling of the fibers is so rapid that it is essentially adiabatic and

very little heat flows transversely. On the other hand, if the frequency is low enough the

change in temperature of the fibers is so slight that again there is very little transverse

heat transfer. Between these extremes there is a condition of maximum loss and maxi-

mum damping. It is of interest to examine the precise nature of the dependence of the

damping on the frequency in this process.

It is shown by Zener 3 that for simple harmonic motion at frequency _ the dynamic

tension modulus in a bending beam may be taken in the complex form E(1 + ig) with the

damping coefficient g given by

a 2 ET wr

g - c 1 ÷ _2_-= (1)

where

-- linear expansion coefficient,

E = tension modulus,

T = absolute temperature,

c = specific heat per unit volume,

and r is the relaxation time for the equalization of temperature in the beam by transverse

heat flow. The evaluation of T for any specific shape of beam cross-section requires the

solution of a difficult heat transfer problem. For a flat reed of uniform thickness, Zener3

gives the following result:

h 2 c

- (2)
7- 7r 2 k '

3Zener, C. M., "Elasticity and Anelasdcity of Metals," Chicago:. University of Chicago Press, 1948



where h is the thickness of the reed, k is the thermal conductivity, and k/c is known as

the thermal diffusion coefficient. The frequency dependence in Equation 1 should be noted:

the damping coefficient is maximum at the frequency _ = 1/T and falls off gradually to

zero for both very high and very low frequencies. The result given by Equation 1 is due

to a single relaxation mechanism. Actually there are a number of such mechanisms, each

with its own relaxation time 9. Because of the linearity they can simply be superposed to

provide the total damping coefficient. If the relaxation times for the different mechanisms

are separated by orders of magnitude (as is usually the case), then it is possible to con-

sider each mechanism separately in the frequency range (about two decades) in which it

peaks.

In Figure 1 curves of damping coefficient vs. frequency according to Equation 1 have

been plotted for 1/16-inch-thick reeds of steel (0.2% C, cold rolled); brass (1/2 hard,

yellow); and aluminum (2024-T4); all at room temperature. To obtain these results the

values given in Table 1 were employed.

It should be noted that for frequencies considerably higher than the frequency _ = 1/_-

where the peak occurs, the variation of the damping coefficient is very nearly inversely

proportional to _ according to Equation 1. It should also be emphasized that the theory in-

volved is linear, i.e., according to this model the damping coefficient should be independent

of the amplitude of vibration.

SIMILARITY ANALYSIS FOR NONLINEARFREQUENCY-

INDEPENDENTHYSTERESIS DAMPING

A striking property of internal damping of vibration in metals at engineering stress

levels is its nonlinearity with respect to amplitude4; and in some cases there is little, if

any, frequency dependence throughout the range of engineering importance. It is commonly

assumed that the damping coefficient g varies as a power of the stress amplitude S; i.e.,

that

g : , (3)

where s o and n are material constants. Data for many metals s appear to fit this relation,

with n falling between zero and unity when the stress level is below a certain critical stress

that is quite close to the fatigue strength of the material. Above this limit the damping

4See, for example, Pian, T. H. H., "Structured Damping," in: Random Vibration, ed. by S. H. Ctandall, Cambridge: Tech-

nology Press of the Massachusetts Institute of Technology, 1958, Chapter 5

SLazan, B. J., and Goodman, L. E., t'Material and Interface Damping," in: Shock and Vibration Handbook. ed. by C. M.

Harris and C. E. Csede, New York: McGraw-Hill, 1961, Vol. 2, Chapter 36
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Table 1

Values Used in Equation 1 to Obtain the Curves Shown in

Figure 1; All Data Taken at Room Temperature

Reed
Material

Steel

Brass

Aluminum

6.7 x 10-6

10.5 x i0-e

12.9 × i0-6

E c k

(psi)

30 × 10 -e 245 6.5

15 x 10 -_ 230 14.9

10.6 x 10 -6 197 15.8

k/c

lin"/

0.027

0.063

0.080

becomes dependent on the stress history, and values of n = 20 or more are possible. It

is commonly assumed that the physical mechanism behind Equation 3 is plastic action as

slip-planes and dislocations migrate back and forth; but a quantitative theory appears to

be lacking.

We shall now make a similarity analysis of such damping when a metal body is vibrated

at a natural frequency by a simple harmonic driver. We consider a family of geometrically

similar bodies with a characteristic length dimension L. The elastic constants E and _ are

assumed to remain constant independently of the vibration amplitude; i.e., the vibratory

system is considered to be linear in all respects except for the damping coefficient, Equa-

tion 3, which is assumed to be small. Furthermore, although the continuous body has infi-

nitely many degrees of freedom, we can limit our analysis to a single degree of freedom by

restricting our consideration to a single mode of vibration (e.g., the fundamental). When

the body is excited at the corresponding natural frequency, the response consists over-

whelmingly of this mode alone; and the lighter the damping the more true this becomes.

The first step is to note how the natural frequency varies with changes in the charac-

teristic length L. Let

% = natural frequency,

E = modulus of elasticity,

= Poisson's ratio,

p = mass density.

Then by dimensional analysis or by observing the known formulas for simple bodies (beams,

etc.) we have

w n = -L- f(>, shape) (4)

By restricting ourselves to geometrically similar bodies we need not take the shape factor

into account for purposes of scaling. However, Poisson's ratio v is more troublesome.



In order to proceed in a simple manner we will make the further assumption that either

all materials to be considered have the same value of Poisson's ratio or that the mode of

vibration is such (e.g., in a slender member) that Poisson's ratio does not appear in Equa-

tion 4. In either case Equation 4 simplifies to

_° _ -_ (5)

If the mode is such that twisting or shearing clearly predominates we will use the shear

modulus G, in place of E in Equation 5.

The assumption has been made that the damping is sufficiently small to have no effect

on the natural frequency. We also assume that the mode shape is unaffected by the damp-

ing. The damping does, however play a crucial role in fixing the amplitude of the mode

when the body is excited at resonance. Let 8 be a characteristic deflect, ion of the mode.

Then the amplification factor at resonance is given by

_r¢l

Q - 8o , (6)

where the deflections are due to distributed exciting forces proportional to the inertia

forces of the mode in question. In one case this distribution of forces is applied statically

to give 8o and in the other case the same pattern of force amplitudes occurs in simple

harmonic motion at the natural frequency. A necessary preliminary in reducing this to a

single degree of freedom is to decompose the actual excitation pattern into natural mode

components and to disregard all contributions except that of the mode in question. In any

particular case in which a quantitative comparison between theory and experiment is re-

quired (an example of this is shown in Section 4), the mode participation factor will have

to be calculated. For purposes of scaling, the actual value of the mode participation factor

is unnecessary because it remains fixed for geometrically similar cases.

The next step is to relate the deflections to the excitation. A simple way to obtain the

form of the results is to consider the single-degree-of-freedom model shown in Figure 2:

Let us take the excitation to be a forced motion of the foundation characterized by the

amplitude a of the acceleration. The static and resonant deflections can be obtained from

a dynamical analysis. The mass m represents the effective inertia for the mode in question,

and the complex spring constant k(1 + ig s ) represents the effective stiffness for the same

mode resulting from the configuration and from the complex modulus E(I + ig). The re-

lation between the specimen damping coefficient g, and the material damping coefficient

g is of the form

g, = g R(n. mode shape) , (7)



where thedimensionless ratio R depends on the

configuration of the body, on the particular

mode under consideration, and on the exponent

n in the damping "law" (Equation 3). General

procedures for obtaining R have been outlined

by Lazan and Goodman s and an explicit expres-

sion for a cantilever beam is derived here in

Section 4. For linear damping mechanisms in

homogeneous bodies, the ratio R is unity and

the specimen damping coefficient is identical

with the material damping coefficient.

In Figure 2 the amplitude of the foundation

acceleration is a and the deflection S is the rel-

ative displacement of the mass with respect to

r-

, I ()()()©

C) ()() () O

Figure 2-Single-degree-of-freedom model
for analyzing the response of a single vi-
bration mode of a continuous member

the foundation. When the foundation acceleration is applied statically (i.e., unidirectional

steady acceleration of magnitude a) the inertia force on the mass is -ma and the steady

state deflection is

- a
_o : (Sa)

O9n2 '

where wn = _ is the natural frequency of the mode in question. When the foundation's

motion is at the resonant frequency, the amplitude of the resonant deflection is

Comparison of these results with Equation 6 shows that

1
Q- (9)

gs "

R remains to relate the specimen damping coefficient to the resonant deflection. Ac-

cording to Equation 3 the damping depends nonlinearly on the stress amplitude. The stress,

however, depends linearly on the strain which in turn depends linearly on the deflection.

In fact, since strain is change in length (which is proportional to _) divided by original

length (which is proportional to L), we have

,,, (io)
S "_ E L

for the resonant stress amplitude. Equations 3, 5, 7, and 10 can now be combined as follows:
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R %_ (II)
re$

Finally introducing Equation 8b, we have

_, _ R :,- , (12)

from which we obtain the scaling law for the damping coefficient gs :

1 ;,:-1

g. _ R.+l a (13)
OAn /

Note that z, E and So are material constants (as is a) while a indicates the level of the ex-

citation; and since we are confined to considering a particular mode of vibration, % is

essentially a size parameter whose value characterizes one of a family of geometrically

similar bodies. The amplification at resonance, Q, is simply the reciprocal of gs, so its

scaling law is

l "_2__

Q : (:4)

Although these results have been derived for complete geometric similarity they apply

to a somewhat wider class of cases. For example they apply to uniform one-dimensional

members, such as beams and shafts, where the cross section is fixed and only the longi-

tudinal dimension is altered. In fact, they apply to any family of shapes in which the

resonant stress amplitude is related to the resonant velocity amplitude _',_re. by an ex-

pression of the form 6

s _ ¢t-Z _._ros (:5)

If this equation holds, then Equation 13 is valid even when Equations 5 and l0 assume dif-

ferent forms.

6For an enumeration of several such cases see Hunt, F. V., "Stress and Strain Limits on the Attainable Velocity in Me-

chanical Vibration," ]. Acoust. Soc. Amer. 32(9):1123-1128, September 1960. Apparently the fact that resonant stress

is proportional to resonant velocity was first recognized by H. G. Yates in '*Vibration Diagnoses in Marine Geared

Turbines," Trans. North East Coast Institution o� Engineers and Shipbuilders, 65, pt. 4:225-261, February 1949, Ap-
pendix I.



9

SIMILARITYANALYSISFORA NONLINEARRELAXATIONPROCESS

In Section 1 the frequency dependence of the damping coefficient for a single linear

relaxation phenomenon was seen to be of the form

O97"

g _ 1 + _2T2 ' (16)

while in Section 2 the implications of the nonlinear frequency-independent relation

g : (17)

were examined. In this section we consider the consequences of a hypothetical mechanism

having the frequency dependence of Equation 16 and the amplitude dependence of Equation 17;

i.e., we consider a nonlinear-relaxation damping mechanism for which

(18)-- 1 + _2T2 '

where n, s o and _ are material constants. The microscopic mechanism responsible for

Equation 18 is not hypothesized at present; it is therefore an ad hoc relation. We will see,

however, that experimental data for aluminum correlate better with Equation 18 than with 17.

We next make a similarity analysis based on Equation 18 for a family of similarly

shaped bodies being driven at resonance in a given mode of vibration. The analysis is

almost identical with that in Section 2 except for the replacement of Equation 3 by the new

assumption 18. It is only necessary to eliminate S and St, ' from Equations 8, 15, and 18

to obtain

1

as the scaling law for the specimen damping coefficient g.. The material constants are

p, E, s o , _ and n, while a is a measure of the amplitude of the input acceleration and w is

the natural frequency of the mode in question.

If the relaxation phenomenon Equation 18 peaks at a frequency 1/7 which is low com-

pared to any of the resonant frequencies % to be considered, then _ would always be

large compared to unity and Equation 18 could be simplified by omitting the 1 in the de-

nominator. In that case Equation 19 takes the simplified form
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gs _ a "

TC_Onn+ 1

(20)

Finally, if in addition we concentrate on a fixed material and consider only changes in size

and in excitation level, the scaling law (Equation 20) reduces to the relation

n

gs% _ an÷l (21)

EXPLICIT ANALYSIS FOR A CANTILEVER BEAM

Similarity analyses were used to obtain the scaling laws (Equations 13 and 19) for non-

linear frequency-independent damping and for damping due to a nonlinear relaxation proc-

ess. In this section we verify these general results for a particular case in which exact

analysis is possible.

We consider the cantilever beam or reed shown in Figure 3 when the base is driven

sinusoidally with acceleration amplitude a at the fundamental resonant frequency of the

hYo I I

beam. We will derive explicit relations for the

specimen damping coefficient gs in terms of the

Figure 3-Cantilever beam of length L and
depth h excited by motion y (t)of the
base

two hypothetical nonlinear damping "laws" already

used 7.

Let v(x, t) be the relative transverse de-

flection of the beam and consider first the free

undamped motion. The differential equation is

_4v _2 v

-- + ,bh-- = 0, (22)El cx 4 _t 2

where EI is the flexural modulus, p the mass density, b the width, and h the depth of the

beam. This equation, together with the boundary conditions for a cantilever, fixes the nat-

ural modes ¢=(x) and the natural frequencies o_m. These have been tabulated s. The first
F

mode of the cantilever is

el(x) = cosh _1 x - cos _1 x - o 1 (sinh _1 x - sin hlX ) , (23)

7A similar result for the damping law of Equation 3 has been obtained by J. Wilkening of the Brown Engineering Company,

Huntsville, Alabama (private communication).

8young, D., and Felgar, P. R., Jr., "Tables of Characteristic Functions Representing Normal Modes of Vibration of a Beam,"

Austin: University of Texas, 1949 (Univ. Texas Publ. No. 4913; Eng. Res. Set. No. 44); See also Bishop, R. E. D., and

Johnson, D. C., "The Mechanics of Vibration," Cambridge: The University Press, 1960, p. 382.
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where

£sL = 1.8751 ,

_t = 0.7341 ;
(24)

and the corresponding natural frequency _, is given by

EI _,4 El (25)2 _- = 12.36-----

c°x phh pbh L 4

We next consider the steady deflection of the beam when the base is steadily accel-

erated with the constant acceleration a. The loading is the inertia force pbha per unit

length, and the governing equation for the deflection v(x) is

d4v

EI-- = pbha (26)
dx 4

This deflection may be considered as a superposition of all the natural modes

v(x) =Z% %(x) (27)

In order to measure the amplification factor at the resonance of mode ¢1 we need to know

the magnitude of c 1 in Equation 27. This is found by inserting 27 into 26, multiplying both

sides by % (x3, and integrating over the length of the beam. Using the orthogonality of the

modes, together with the fact that the natural modes satisfy

d4_ m

El dx 4 - pbh co_% , (28)

yields

C1 - _q (x3 dx
col 2

= 0.783--
a

2 (29)
col

The first-mode tip deflection so under this steady state loading is

a
= 1. 566 --

co 12

(30)
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As a matter of interest the first-mode component in Equation 27 is by far the major con-

tribution. The total contribution from all other modes amounts to between 1 and 2 percent

of the first-mode deflection.

Finally, the excitation is taken as simple harmonic motion of the base at the resonant

frequency %. The acceleration of the base still has the amplitude a. We assume that the

damping is sufficiently small that the response of all other modes is negligible, i.e., the

response mode shape is simply C e ' _l(x). The resonant amplitude of this mode is limited

only by the damping.

A convenient procedure for evaluating the effective specimen damping coefficient _5

is based on the relation

Aw
_, : _--T, (31)

where w is the peak potential energy in the oscillation and aW is the energy loss per cycle.

The calculation for w is independent of the damping mechanism. It consists in integrating

the strain energy per unit volume S_/2E throughout the volume of the beam, using the bend-

ing stress distribution

s - My
I (32)

in each cross section with the longitudinal distribution

d2¢l(X)
M = EI C (33)

re$ dx 2

obtained from the first mode shape. Thus

L 2

- by 2 dy dx (34)
w 2 _ \ ax_ /

The integrals in Equation 34 may be made dimensionless by introducing the variables

x - Y (35)=-L-, v ---_

and the notation of Young and Felgar 8 in which

d2_l(x)

= k2 ¢_, (_) , (36)dx 2
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where ¢i' is a dimensionless function of the nondimensional variable d, and the constant

4, is given by Equation 24. In terms of these the peak potential energy is

1

W = 2 Lbh(h_ 1 )_ V2 d_ (_)] 2 d_ .
(37)

The energy loss per cycle can be obtained from a similar integration in which the

cyclical loss per unit volume is 27_gS2/2E where g is the material damping coefficient.

We shall obtain two results from the two hypotheses (Equations 3 and 18) regarding the

behavior of g. Using Equation 3 we have

AW
unit volume

- 27
(_0) n $22---g (38)

which, when integrated throughout the volume, yields

h

AW : 27 _ E bYn+2 dy \d--_) dx (39)
2

The integrals in Equation 39 may be cast into dimensionless form by again introducing

Equations 35 and 36:

1

.... +2 (40)
AW : 27 --_ \ So ] Lbh(hKl_)n+_ 77n+2 dv _' (_ d_½ o

Finally the specimen damping coefficient g. is obtained by inserting Equations 37 and

40 into 31. To simplify the result we introduce the symbol l_ for the following ratio of

dimensionless integrals:
I

v"+2d_ ;'(¢) d/=
½

1_ -- -- I ...... (41)

2

This ratio depends on the damping "law" exponent n and on the mode shape involved; it can

be explicitly evaluated by using the tables of Young and Felgar 8 , but we will not do so here.

With this notation the specimen damping coefficient is

fEhkl_ C e,_"

g, : R\ SO ] (42)
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The numerator of the fraction may be recognized as the bending stress amplitude in the

extreme fibers at the root of the cantilever during resonance [since ," (0) - 2]. This

permits the further interpretation that R is the ratio of the specimen damping coefficient

to the material damping coefficient in the most highly stressed portion of the material.

This represents a particular example of the general relation of Equation 7.

i.e._

The specimen damping coefficientis also related to the amplification at resonance;

C 1

_s :: Cres (43)

where c_ is the amplitude (Equation 29) of the first mode shape under static loading and

Cr_ _ is the amplitude (Equation 42) under resonant loading of the same load amplitude.

Eliminating C 1 and Cr¢ S among Equations 29, 42, and 43 leads to

_s

\ SO "'12 Y_s /

(44)

from which :_,

yields

can be eliminated by using Equation 25 together with I : },ha 12 . This

n

1 _..2.7_1 _ a 1 _--4-F (45)
_s : Rn+l --

\ S0 _1/ '

which represents an explicit relation for a cantilever beam having the form of the general

scaling law of Equation 13.

The analysis based on the nonlinear relaxation "law" (Equation 18) is completely par-

allel. In place of Equation 45 we find

R_ : So a (
_31 n

(46)

which is a particular case of the general scaling law of Equation 19.

CORRELATION OF EXPERIMENTAL DATA

The author is grateful to Mr. Maarten Vet of Collins Radio Company for making availa-

ble a considerable amount of data obtained by vibrating cantilever reeds of steel, brass
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andaluminumat roomtemperatureonanelectromagneticshaker2. Thereedswere 1/16
inchthick andvariedfrom 6-1/2 to 2 inchesin length. Carewasexercisedto minimize
lossesat the root. Thereedswerevibratedin air, however,andthe stresslevels involved
were high. Thepeakstressat theroot was taken well over the fatigue limit in many cases.

The reeds were shaken at their fundamental resonant frequency and the resonant tip

amplitude was measured with a microscope as the base acceleration amplitude was varied

over a considerable range. The static tip amplitude for the same acceleration was com-

puted from Equation 30 and, when divided by the measured tip amplitude, gave the experi-

mental g, for the particular material, excitation acceleration amplitude a, and frequency _1"

A preliminary display of the data is shown in Figures 4, 5 and 6 in an effort to separate

the stress amplitude and frequency effects. The stress levels indicated are the peak

stresses in the reed which occur in the extreme fibers at the root of the cantilever. The

data shown in Figures 4, 5 and 6 have been interpolated from Vet's results 2. Note that for

all three materials there appear to be both frequency and amplitude effects, but for steel

and brass the amplitude effect is more pronounced than the frequency effect whereas the

situation is reversed for aluminum. For comparison, the damping contribution due to re-

laxation by transverse thermal currents (taken from Figure 1) is also shown in these

figures; the smallness of this contribution at engineering stress levels is clearly evident.

The frequency range of the data (50 - 500 cps) is insufficient to indicate whether a relax-

ation phenomenon is responsible for the frequency variations obtained. The data would not

be inconsistent with a nonlinear relaxation phenomenon having a peak well below 50 cps.

An attempt to correlate the data by using the scaling law of Equation 13 is shown in

Figures 7, 8 and 9. For a given material, this equation yields

n

(47)
g_ \%] '

so that a log-log plot of g, vs. a/% would yield a straight line of slope n/(n + 1). Since

the units here are not important, we have simply used gravities (g's) for the acceleration

amplitudes a, and radians/second for the resonant frequencies _1. Note that the correlation

is reasonably successful for steel and brass but fails completely for aluminum. For steel

the exponent n corresponding to the straight line shown in Figure 7 is 1.26, while for brass

the straight line in Figure 8 yields n = 1.69. These values might be expected to lie be-

tween 0 and 1 if the stress had remained below the cyclic stress sensitivity limit s. Actu-

ally the stress levels at the root in every specimen went well above this limit.
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In an attempt to find an improved correlation for the aluminum, a nonlinear relaxation

mechanism was postulated in Section 3. This led to the general scaling law of Equation 19.

Correlation with this is difficult because of the unknown relaxation time T. However, the

shape of the curves in Figures 4, 5 and 6 suggested that it would be adequate to assume

T large enough so that the approximation of Equation 20 could be used. For a single ma-

terial this reduces to

n

._1 (48)

according to Equation 21. The results of replotting the data on log-log paper with _1 as

ordinate and a as abscissa are shown in Figures 10, 11, and 12. It is clear from Figures

10 and 11 that the data for steel and brass are not satisfactorily correlated by Equation

48. For aluminum, however, the correlation shown in Figure 12 is reasonably satisfactory.

From the slope of the straight line shown in Figure 12 we find n = 0.77.
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CONCLUSION

Two nonlinear damping "laws" have been studied and the data from a large number of

tests compared with scaling laws derived from these "laws." The assumption of frequency-

independent nonlinear damping (Equation 3) gave fair correlation for steel and brass, and

the assumption that the damping coefficient satisfies

" 1 (49)g = -_-

_ave fair correlation for aluminum.

/

Actually none of the correlations are perfect. Systematic deviations were noted in

every case, and much more work is needed before a clear picture will emerge. The tests

should be repeated in uacuo to ascertain whether in fact the damping measured was princi-

pally due to material damping. Stress levels should be monitored to ascertain whether a

simpler pattern exists if the stress levels remain below the cyclic stress sensitivity limit.

A wider frequency range would be desirable, perhaps augmented by variation of the tem-

perature.
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